Gabcikovo Part of Hydroelectric Power Project and Joint Slovak - Hungarian Monitoring of Environmental Impact

Danubian Lowland Aquifer

The main characteristics of Danubian Lowland area :

• Unique groundwater resources

- high permeable gravel-sand Quaternary sediments
- thickness of alluvial aquifer more than 300 m
- the aquifer is recharged by water from the Danube river during the whole year
- excellent groundwater quality
- Unique floodplain ecosystem
- Extensive human activities
 - agriculture, forestry, industry, tourism
 - Gabčíkovo Hydroelectric Power Project

Objectives of Gabcikovo-Nagymaros Hydroelectric Power Project

- **1. Flood Control**
- 2. Navigational Improvements
- 3. Production of Electrical Energy
- 4. Positive Environmental Impacts

Basic Input for Decision Making

Groundwater and Environmental Management in the area is based on :

• Monitoring

- surface water and groundwater regime
- surface water and groundwater quality
- quality of river bed sediments
- soil moisture regime in the aeration zone
- biota (flora and fauna) including forestry

• Data interpretation using numerical modeling

- groundwater flow and quality
- surface water hydrodynamics, sediment transport and quality of water in the river, river branch system, and reservoir
- agricultural modeling, pumping test modeling, etc.

Joint Slovak-Hungarian Monitoring

Agreement between the Government of the Slovak Republic and the Government of Hungary about Certain Temporary Measures and Discharges to the Danube and Mosoni Danube, signed on April 19, 1995:

- Increase of water discharge into the Mosoni Danube and river branches from 20 to 43 m3/s via the Čunovo intake structure
- Increase the discharge into the main Danube downstrean from the Čunovo weir to 250-600 m3/s (400 m3/s on average)
- Construct an underwater weir in the main Danube at Dunakiliti to supply Hungarian river branches with water (130 m3/s)
- Collect and exchange environmental monitoring data which are necessary for an analysis of the impact of the mentioned measures (Joint Slovak-Hungarian Monitoring of Environmental Impacts)
- **Prepare National annual reports and Joint annual reports**

Groundwater regime

Joint Monitoring

 Biota, Forest, Soil Moisture

sediments

Joint Monitoring – Surface Water Quantity

Surface and Ground Water Level Monitoring

Joint Monitoring – Ground Water Regime

Ground Water Level Contour Lines (2000)

Ground Water Level Differences 1962/1992

Ground Water Level Differences 1992/1998

Ground Water Level Differences 1993/2000

Joint Monitoring – Surface Water Quality

Joint Monitoring – Ground Water Quality

Joint Monitoring – River Bed Sediments

Joint Monitoring – Soil Moisture

Joint Monitoring – Forest Monitoring

Joint Monitoring – Biological Monitoring

Groundwater Modeling

Modeling examples in Danubian Lowland area :

- Modeling infiltration from river
- Modeling conservative and reactive transport in groundwater
- Modeling groundwater flow towards municipal waterworks wells
- Modeling surface water hydrodynamics and sediment transport (Project PHARE EC/WAT/1)
- Pumping test modeling

Modeling infiltration from river in vertical profile

Goals of interpretation :

- Hydrogeological characteristics of aquifer
- Boundary conditions
- Equipotential lines, streamlines and retention times
- Water balance

Modeling infiltration from river in vertical profile

Modeling conservative transport in groundwater

Goals of interpretation :

- Migration parameters of aquifer (dispersivity, active porosity)
- Changes of groundwater quality caused by seasonal variations of surface water quality (e. g. chlorides in Danube river)

Modeling conservative transport in groundwater

0/4.46913 1/-0.171168 2/0.00344742 3/-1.48757e-5 4/1.83103e-1

Modeling reactive transport in groundwater

Goals of interpretation :

 Kinetics of microbially mediated redox processes
 (e. g. aerobic respiration, denitrification)

• Reactivity of aquifer sediments (e. g. oxidation of organic carbon, reductive dissolution of Mn-oxides)

Modeling reactive transport in groundwater

Modeling reactive transport in groundwater

Hydrogeochemický profil pri Kalinkove

Modeling 3-D groundwater flow towards municipal waterworks wells

Goals of interpretation :

- Place of infiltration
- Zone of 50-day retention time
- Water devide (for individual exploited wells and whole waterworks well system)
- Hygienic protection zones

Modeling 3-D groundwater flow towards municipal waterworks wells

Modeling surface water (Project PHARE/EC/WAT/1, 1995)

Goals of interpretation :

• Hydrodynamics

(surface water flow velocities, depth of water, flooded areas)

• Sediment transport

(places of sedimentation and erosion, thickness of river bed deposits)

• Water flow guiding structures

• Surface water quality

Modeling surface water in the reservoir

Modeling flow velocities in the reservoir

Modeling sediment transport in the reservoir

Pumping test modeling

Interpretation of pumping test :

- Constant or variable pumping rate and drawdown
- Hydrogeological characteristics of aquifer (non-uniform stratified aquifer under confined, leaky or unconfined conditions)
- Characteristics of pumping well (e. g. radius and depth of well, well loss, position of screen)

Influence of precipitation and evapotranspiration

Pumping test modeling

Modelling influence of various boundary conditions during the pumping test

Examples of water related management

Thank you for your attention .

For more details see the publications and documents available at :

WWW.GABCIKOVO.GOV.SK/DOC/

Publications

Documents

Documents available at **WWW.GABCIKOVO.GOV.SK**:

- Treaty between the Hungarian people's republic and Czechoslovak socialist republic concerning the construction and operation of the Gabčíkovo-Nagymaros system of locks (1977)
- Judgement of the International Court of Justice (1997)
- Agreement between the government of the Slovak Republic and government of the Republic of Hungary concerning certain temporary technical measures and discharges in the Danube and Mosoni branch of the Danube (1995)
- Statute on the activities of the Nominated Monitoring Agents
- National Annual Report on the Environment Monitoring on the Slovak Territory (1999, 2000)
- Joint Annual Report on the Environment Monitoring (1999, 2000)